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Abstract—The Gene Regulatory Network (GRN) specifies the series of regulatory interactions between different genes. A target gene is 
interacted by a signal which is originated from the expression of its regulator gene. A gene is known to be expressed when it synthesizes a 
protein and the degree of synthesizing the protein determines the level of its expression. The same gene can behave as a 'target' in one 
state of interaction and a 'regulator' in the next state. If there are many interacting genes in a biological system, a network can be formed 
out of them where the genes are treated as nodes and interaction between any two genes is treated as an edge. This network is known as 
Gene Regulatory Network. Simulation of GRN addresses the issue of reconstructing the network on the basis of the expression levels of 
the interacting genes. Various mathematical tools are used to design the system and different optimization techniques are used to find the 
optimal design. The process of designing starts with time-dependent (Time-series) and condition-dependent (Steady state) gene 
expression data, available from micro-array chips. The target gene is activated depending on the collective interactions made to it. The 
problem can be modeled using Neural Network and application of Fuzzy logic may improve the design. There are two issues to discuss. 
One is related to uncover the parameters involved in GRN called parameter estimation problem. The other is to predict the network 
structure step by step while learning the parameters. Applications of meta-heuristic algorithms are proved to be efficient in resolving both 
the issues. 

Index Terms—Bayesian network, correlation, direct scale free network, fuzzy logic, gene expression, microarray, neural network, 
optimization.  

———————————————————— 

1 INTRODUCTION
ENES, the functional and primarily protein coding parts 
of the DNA are the blue prints of life in an organism. 
Gene expression is the way of response of a gene to a 

physiological phenomenon. The expression of a gene is com-
posed of two main steps, viz., Transcription and Translation. 
Transcription is a bio-chemical change happening in the cod-
ing region of a gene (exon) by some external or internal influ-
ence which produces some intermediate products like primary 
RNA, messenger RNA or mRNA etc. [1], [2], [3]. Another bio-
chemical reaction named translation when acted on the 
mRNA, the final product is formed that is known as protein. 
The extent of expression of a gene is a measurable quantity 
and named as expression level of the gene at the instance. Due 
to different cellular activities [4], [5], [12] the expression level 
of a gene may change and the protein thus produced may 
bind to the promoter site of any other gene causing it to be 
expressed. According to modern theory the sole cause of regu-
lation is not the protein alone. In other words gene regulation 
does not occurs only in translational or post translational lev-
els, it occurs also in transcriptional level as well by a short 
format RNA called micro RNA. The regulatory interaction 
may change the protein synthesis of the target gene in two 
ways, either to increase or to decrease [13], [15], [16]. They are 

named as enhancing or repressive regulatory interactions re-
spectively.  

The simulation of GRN can be done in two ways. One way 
is to construct the network from the microarray data by meas-
uring similarity between expression levels at different time 
instances or conditions.  This is called forward modeling. The 
other way of simulation is the Inverse modeling. In this pro-
cess, network is constructed arbitrarily and expression level of 
the target gene is generated using certain mathematical formu-
la. The error is calculated by comparing the simulated data 
with the original gene expression data. The structure of the 
gene regulatory network obtained from forward modeling 
provides a static road-map where the actual interest lies in the 
pattern of traffic, the cause of emerging such patterns, the way 
to control them so on and so forth. The structure of the net-
work is similar to listing up the parts of a machine which does 
not give a clear picture of how the machine performs a partic-
ular function and how a subset of machine parts interact to 
each other when performing the function[11]. If the network is 
simulated in steps, the dynamics of the system may be under-
stood. At each time step, a new edge is attached to the net-
work. This depicts the dynamics of the gene interactions in 
cellular activities. 

All the genes of an organism are sparsely present in the ge-
nome. The genome is embedded in each cell of the body of an 
organism [8], [9], [10]. But a gene may be expressed in one 
tissue and remain unexpressed in any other. In this context 
there are some questions to be answered. Which gene is ex-
pressed? When will the gene be expressed, in which tissue of 
the organism and to what extent [14]. For example, Insulin, the 
best studied poly-peptide hormone in human being, is pro-
duced by Human Insulin Gene (INS). It is produced as a result 
of increasing sugar level in blood and acts to lower the level of 
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the sugar. The gene (INS) is expressed in the Beta Cells in Pan-
creas only, though it is present in any other cell of the body.  

The study of the regulatory system consists of the following 
components [11]: 
i)  Structure of the System: The gene regulatory network 
(GRN) is represented by a graph G, where each gene i ∈ N (N 
is the maximum number of genes in the system) represent a 
node and regulatory interaction between i and j is an edge if 
gene j has any influence to the expression of gene i. 
ii)  System Dynamics: Time dependent (producing time 
series data) and condition dependent (producing steady state 
data) behavior of a set of genes is represented in system dy-
namics. 
iii) Controlling Methods: The internal state of the cell 
may be controlled to minimize the malfunction as well as to 
facilitate drug finding applications. 
iv) Design Methods: Simulation of GRN from gene ex-
pression data uses different probabilistic models and employs 
various local search algorithms to optimize the construction 
procedure. 

 
Some applications of GRN are described as under: 
a) Biomarker detection: Biomarker detection is an im-
portant application of the study of gene regulatory network. 
The gene regulatory network depicts the cellular activity un-
dergoing in the tissues. The regulatory interaction pattern 
changes from normal to diseased tissues. The gene expression 
data from normal tissues and diseased tissues, tissues after 
therapeutic intervention and cure is obtained from microarray 
and regulatory interactions are modeled. It may be seen that a 
strongly connected component of the four different graphs 
corresponding to four different cases mentioned above, has 
been changed from one state to another. This sub-graph indi-
cating the state of a disease is called bio-marker of the disease. 
Biomarker detection using Clustering algorithms has been 
done [49]. The study of gene regulatory network in the context 
of biomarker detection is being an interesting area of research 
[30]. 
b) Drug finding: The adjacency matrix of gene regulato-
ry network is generally seen to be sparse in nature. Some 
nodes are strongly connected to the rest of the network. These 
genes are very few in number. They are called the hubs of the 
network. Drugs are designed concentrating on these hubs and 
aiming to reduce or increase the expression of the gene so as 
the disease can be taken under control. The hub genes detec-
tion in the study of gene regulatory network is especially in-
teresting for drug finding. 
c) Detection of side effects of a drug: After the applica-
tion of a drug it gradually starts taking part in cellular activi-
ties. It may be considered as being a part of the regulatory 
network and sending regulatory interactions to the gene(s) 
targeted. But along with the targeted gene it may send undue 
regulatory interaction to other genes present in the network 
and even to the tissues not having affected by the disease. So 
side effect detection in the study of regulatory network is an 
important issue. 

The rest of the paper is organized in following manner: 
Section 2 describes the GRN reconstruction framework which 

encompasses the data extraction and preprocessing, the co-
expression matrix generation from processed data and finally 
probabilistic modeling. Section 3 defines the different soft-
computing techniques including Recurrent Neural Network, 
Fuzzy Logic, Optimization Techniques and a software aiding 
the reconstruction, named as, GeneNetWeaver. In Section 4, 
the experimental issues including the source of data, the met-
rics concerned in the performance evaluation of the simulation 
and a performance analysis from reviewed literature. 

 
2. GRN: MATHEMATICAL FRAMEWORK 
The microarray data, collected from image analysis are prone 
to errors. So the data is processed before being used in the 
simulation. The preprocessed data is used for co-expression 
matrix generation which gives the possible relation between 
genes. The graph generation process is based on either associ-
ation computation between two samples of gene expressions 
or probabilistic reconstruction of the graph. Mathematical 
modeling is required to be applied in Data extraction and pre-
processing  as described in Section 2.1, Co-expression matrix 
generation as described in 2.2 and Probabilistic graph genera-
tion as described in 2.3. 

 
2.1 Data Extraction and Preprocessing 
Gene expression level denotes a quantity which indicates the 
level of expression (protein generation process) for a particular 
gene in the cell and is represented in a floating point number 
obtained from microarray. The final input matrix contains N 
rows where each gene represents a row and T columns or 
samples where each column correspond either to a time point 
or to a condition. Here each entry represents the gene expres-
sion level of a gene i at sample t. But the raw data collected 
from microarray is prone to contain various noise elements. So 
there should be methods of extraction [30] of original gene 
expression levels sampled earlier. 

Consider, Yt denotes a set of microarray samples of all tar-
get genes measured at sampling time t and Xt be the gene ex-
pression levels at t, then Yt is mapped to Xt. The expression 
level is sampled at certain time intervals to generate time se-
ries data. There are several models regarding extraction of 
gene expression from microarray data. 

 
2.1.1 Fully correlated model 
This model is based on the assumption that microarray data is 
fully identical with the actual gene expression i.e. Yt = Xt .This 
model is too simplified and does not correspond to real micro-
array experiments since it ignores noise factor. 

 
2.1.2 Linear Gaussian model 
White Gaussian noise is the linear combination of Gaussian noise 
(i.e. probability density function of the noise amplitude follows 
normal distribution) and white noise (noise with power carried by 
wave is constant per unit frequency).Yt is related to Xt by a line-
ar combination considering white Gaussian noise to be mixed 
with microarray data. 

𝑌𝑡 = 𝑀 ⋅ 𝑋𝑡+𝑎𝑜𝑏𝑠+𝑣𝑡 
M: Projection matrix is assumed to be identity matrix. 
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aobs: A vector to adjust measurement error during observa-
tion. 

vt: White Gaussian noise vector 
. 

2.1.3 Gaussian model with discrete expression levels 
In this model expression of each gene i at time t, xi(t) is related 
to corresponding micro-array data yi(t) with probability de-
termined by Gaussian function. An individual probability for 
each gene indicates that this model accepts different noise lev-
els for different genes of the network making the model non-
linear and potentially better. 

After extraction of the data it undergoes some pre-
processing operation by calculating signal to noise ratio (SNR) 
and normalization [49]. Suppose two data sets of normal and 
tumor cells named as class1 and class2 are present in hand, 
then SNR is defined as 

 

(𝑆𝑁𝑅) = �
�𝑚𝑆𝑎𝑡(𝑆𝑙𝑎𝑠𝑠1)−𝑚𝑆𝑎𝑡(𝑆𝑙𝑎𝑠𝑠2)�
�𝑆.𝐷(𝑆𝑙𝑎𝑠𝑠1) + 𝑆.𝐷(𝑆𝑙𝑎𝑠𝑠2)�

� 

Here S.D represents the standard deviation. After the calcu-
lation of SNR, the dataset is arranged in the descending order 
of SNR and a subset of the data with high SNR is collected. 
Next task is to normalize each expression data to scale in a 
certain range (say 0 to 1). If the jth sample, named Xj contains 
xij, the expression level of ith gene, the formula of normaliza-
tion of xij is given by: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑆𝑧𝑆�𝑥𝑖𝑗� =
�𝑥𝑖𝑗 −𝑚𝑆𝑡𝑆𝑚𝑢𝑚�𝑋𝑗��

�𝑚𝑎𝑥𝑆𝑚𝑢𝑚�𝑋𝑗� −𝑚𝑆𝑡𝑆𝑚𝑢𝑚�𝑋𝑗��
 

This normalized data is arranged into tabular form which is 
suitable for processing. 

 

2.2 Co-expression Matrix Generation 
The  two dimensional array of gene expression data xij∈ X 

is available after pre-processing where each row represents a 
gene and  each column (sample) represents either time points 
(in time series data) or conditions (in steady state data). Now 
the similarity or association between the gene expression lev-
els of two genes i and j is to be estimated. If the value satisfies 
a predefined threshold then the two nodes may be connected 
by an edge. The adjacency matrix formed in this context is 
called co-expression matrix. The similarity is measured [31], 
[36], [44], [45], [46] by different means as under: 

 

2.2.1 Pearson Correlation Co-efficient 
The Pearson correlation coefficient S(Xi, Xj) is estimated as: 

 

𝑆�𝑋𝑖 ,𝑋𝑗� =
1
𝑁 �

�𝑥𝑖𝑘 −𝑚𝑆𝑎𝑡(𝑋𝑖)�
𝑆.𝐷(𝑋𝑖)𝑘=1,𝑁

 .  
�𝑥𝑗𝑘 −𝑚𝑆𝑎𝑡�𝑋𝑗��

𝑆.𝐷�𝑋𝑗�
 

Xi is the set of expression levels of gene i in different sam-
ples 

N  is the number of samples 

xik is the expression level of gene i at kith sample  
mean(Xi) is the mean of N expression levels of gene  i 
S.D(Xi) is the Standard deviation of N expression levels of 

 gene   i 
The Pearson Correlation Coefficient is compared to a 

threshold which may be hard (in the range of .6 - .8) in case of 
un-weighted network or as a function of different parameters 
in case of weighted network. In both the cases the coefficient is 
compared with the threshold σ as under. 

 
𝑆�𝑋𝑖 ,𝑋𝑗� > 𝜎 

If the condition satisfies an edge will be drawn between the 
genes i and j. 

2.2.2 Partial Correlation Coefficient 
Correlation between two genes generally specifies either a 
direct relation between them or a common dependence on 
some third gene. But the Partial Correlation only considers the 
direct relation between two genes and disobeys the theory of 
joint dependence of any third gene. 

2.2.3 Information Theoretic Approach 
In information theoretic approach Mutual Information(MI) is 
the measure to determine the statistical dependence between 
two variables. If there are M states of a system A, i.e. {a1, a2, 
a3, . . ., am} MI is computed using Shannon Entropy H(A) 
which is given as: 

 
𝐻(𝐴) = −∑ 𝑆𝑏𝑀𝐴

𝑖=1 (𝑎𝑖) ⋅ 𝑙𝑜𝑔�𝑆𝑏(𝑎𝑖)�  (i) 

pb(air) is the probability for choosing  air. Similarly joint en-
tropy can be estimated for two systems A and B from joint 
probability pb(ai, bj). The Mutual Information is defined as:  

   
𝑀𝐼(𝐴,𝐵) = 𝐻(𝐴) +𝐻(𝐵)−𝐻(𝐴,𝐵) ≥ 0                          (ii) 

 
The systems A and B are independent if MI(A, B) is 0 and 

the statistical dependence increases with the increase in MI. 
Two genes are taken as system A and B which have either 
some continuous values in [0, 1] or some discrete value taken 
in the interval [0, 1]. 

2.3 Probabilistic Modeling 
The network may be constructed either using forward model-
ing or inverse modeling. The basic graph representation tech-
niques of GRN like Directed Graph and Directed Hyper-graph 
are discussed in subsections 2.3.1 and 2.3.2. Two Forward 
Modeling techniques, viz. Bayesian Network and Boolean 
Network and one Inverse Modeling technique, Directed Scale 
Free Graph are discussed in sections 2.3.3, 2.3.4 and 2.3.5 re-
spectively. The reconstruction of regulatory network is based 
on a mathematical or probabilistic model. This is to avoid 
blind trial and error assumptions.  
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2.3.1 Directed graph 
Here in the directed graph G = (V, E) each gene is represented 
as a node i ∈ V (V maps to N, is the maximum number of 
genes in the system) [14]. Each directed edge is represented by 
a tuple {i, j, sn}, where i and j are the target and regulator 
genes respectively and the symbol sn, (sn ∊ {+,-}) represents 
the sign of the interaction. The interaction is either enhancive 
(+) causing the rate of protein synthesis in target gene i to in-
crease or repressive (-) causing the rate of protein synthesis in 
target gene i to decrease. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The directed graph representation of gene regulatory network 
is shown in figure 1. The set of vertices is represented as V = 
{1, 2, 3} and the set of edges E = {(2, 1, -), (1, 3, +), (3, 2, +), (2, 3, 
-), (3, 3, -)} where each edge is (i, j, sn). Her i and j are node 
numbers and sn is the sign of interaction shown in figure 1. 

2.3.2 Directed Hyper-graph 
The directed hyper-graph G' = (V', E') is composed of a node 
set V' where each node i ∈ V (V maps to N, is the maximum 
number of genes in the system) represents a gene as in 2.3.1 
and each directed edge is represented by a tuple {i, J, Sn}. Here 
i is the target gene which is expressed as a result of the regula-
tory interactions made on it and J is the set of regulators of i, 
collective interactions of whom cause the expression of i and 
Sn is the list of signs of the regulatory influences [14]. If the 
graph of figure 1 is considered as the hyper-graph G', the set 
of vertices V' = {1, 2, 3} and set of edges E' = {(2, [1,3], [-, -]), (1, 
[3], [+]), (3, [2, 3], [+, -])}. For example the edge {(2, [1,3], [-, -]) 
in the edge set E represents that the target gene 2 in figure 1 is 
interacted by the regulators 1 and 3 and both the regulatory 
interactions are repressive i.e. having ‘-’ sign. 

 

2.3.3 Bayesian Network 
It is a probabilistic approach of graph construction [14] [30] 
which has become one of the efficient representations of re-
construction of gene regulatory network. Bayesian network 
represents causal relationships between the nodes [37], [38], 
[39], [40], [41] rather than a flow of information. In gene regu-
latory network this causal relation is drawn between the ex-
pression levels Xi of the gene i involved in the system. In other 
words for a gene set the expression levels are obtained under 
different conditions. The causal relationship is reconstructed 

depending on some probability measures. The Bayesian net-
work is a directed acyclic graph (DAG), G = (V, E) where each 
node i ∈ V is associated with the expression level of gene i, 1 ≤ 
i ≤ N where N is the maximum number of genes in the system. 
Each edge eij∈ E is an interaction between gene i and j. The 
two components of a Bayesian Network (BN) are the DAG and 
a joint probability distribution of the expression levels in-
volved in the system. The conditional probability for each Xi is 
given by: pb(Xi  | par(Xi)) where par(Xi) represents the parent 
of Xi  in the graph G, is a candidate from the set of regulators 
in the system. Here actually we are computing the probability 
of par(Xi) being the parent of Xi from different microarray 
dataset of same genes. And an edge is drawn from parent to 
child if the probability exceeds a certain threshold.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The probability measures required for constructing such a 

graph is written as under: 
The Conditional Probability measures of different variables 

as in figure 2 are described as under: 
pb(X1), pb(X2), pb(X3 | X1, X2 ), pb(X4 | X3), pb(X5 | X4). 
The Joint Probability which represents the network as a 

whole is given as in figure 2: 
Pb(X1,X2, X3, X4, X5) = pb(X1)pb(X2)pb(X3 | X1, X2 )pb(X4 

| X3)pb(X5 | X4). 
An important term involved in this context, Conditional 

Independence is given by the formula: 
Ind(Xi : Non-descendants(Xi) | par(Xi)) which comes from 

the famous Marcov assumptions. 
Statement of Marcov Assumptions: Each variable (Xi) is in-

dependent of the Non-descendant of (Xi) given par(Xi). 
So the set of Conditional Independence according to figure 

2 is given by: 
Ind(X1:X2, X5), Ind(X2: X1), Ind(X3: X5 | X1, X2), Ind(X4: 

X1, X2, X5 | X3), Ind(X5: X1, X3, X4 | X2) 
The probability distribution that obeys the Marcov assump-

tion and the chain rules of conditional probability can be writ-
ten as: 

 
𝑃𝑏(𝑋) = �𝑆𝑏

𝑖=1,𝑛

�𝑋𝑖 ∨ 𝑆𝑎𝑟(𝑋𝑖)� 

Each node of the Bayesian network carry a probability table 
based on which expression level of a successor gene is deter-

 

Figure 1: Directed Graph Representation of Gene Regulatory 
Network. 

 

Figure 2: Sample network of 5 nodes. The conditional proba-
bility of each node of the network pb(Xi  | par(Xi)) is determined. IJSER
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mined. Consider an instance where x is regulated by y and z 
in figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Expression levels are quantized into q=3 levels. The proba-

bility table of x looks like Table1. For the instance when y=1, 
z=2 then probability of x=1 is 0.3, x=2 is 0.5 and x=3 is 0.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two Bayesian Network (BN) are said to be equivalent if 

they contain the same set of conditional independences, i.e. If 
Ind(G) = Ind(G') two BNs are equivalent. In this context the 
statement of Perl and Verma is important. 

Statement of Perl and Verma [37]: Two DAGs are equiva-
lent if and only if they have the same underlying undirected 
graph and same v-structures (i.e. same set of converging edges 
into one node. e.g. Xj→Xi←Xk). 

This implies the equivalence graphs with some fixed di-
rected edges like Xj→Xi and some undirected edges like Xj—
Xi which takes the form of Xj→Xi or Xi→Xj. In the graph of 
figure 2 to keep the v structure X1→X3←X2 intact, all the 
nodes should have the same direction as in the graph. But if a 
6th node be connected from 4 then an equivalence set might be 

there with directed edge 4 to 6 or 6 to 4. Each member of the 
equivalence set of graphs is then evaluated for the score with 
respect to previous data D. The graph from the equivalence set 
with best score is the target network. 

 

2.3.4 Boolean Network 
Boolean network is a suitable medium of the reconstruction of 
gene regulatory network [14]. It is represented as graph G (V, 
E, F) where V is the set of nodes represented as genes. Each 
node i ∈ V is associated with the expression level of gene i, 1 ≤ 
i ≤ N where N is the maximum number of genes in the system. 
Each edge eij∈ E is an interaction between gene i and j. At time 
instance t the state of gene i is denoted by £i∈ {0, 1} which is 
determined by a Boolean function fi∈ F involving k genes. So 
there are 2K possible values of £i. £i = 1 means gene i is ex-
pressed and £i = 0 means gene i is not expressed. An edge is 
extracted if gene i is expressed or £i flips from 0 to 1. Another 
function fj, taking this output as an input along with (k-1) oth-
er inputs evaluates the state of some other gene. The genes i ∊ 
{1,2,....,n} at time point t constitute an n element vector X(t) {£1, 
£2, ….,£n} which represent the state of the system at time point 
t. At time point t+1 system changes its state to X(t+1) by the 
set of functions F. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 and Figure 5 shows the change of state from time 

point t, X(t) to the state at time point t+1, X(t+1). The four 
functions in the set F are some standard Boolean gates. In real 
practice they may be some complex Boolean functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: A gene regulating instance when 
genes y and z regulates x. 

 

TABLE 1 
PROBABILITY FOR GENEX 

y z x=1 x=2 x=3 

1 1 0.6 0.3 0.1 

1 2 0.3 0.5 0.2 

1 3 0.8 0.2 0 

2 1 0.15 0.35 0.5 

2 2 0.7 0.2 0.1 

2 3 0.1 0.6 0.3 

3 1 0.5 0.2 0.3 

3 2 0.2 0.4 0.6 

3 3 0.17 0.23 0.6 

 

 

Figure 4: Wiring Diagram of a Sample Boolean Network 

 

Figure 5: State Change from t to t+1 in the Circuit Diagram of a 
Sample Boolean Network 
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Each node of the Boolean network carry a data table based 

on which expression level of a successor gene is determined. 
Consider a regulatory interaction where x is regulated by y 
and z in figure 1.  

Expression levels are quantized into 0 and 1 where zero in-
dicates gene is not expressed and one indicates gene is ex-
pressed. The probabilities of x taking different values are pre-
sented in Table2. For instance at time t if y is not expressed 
and z is expressed then gene x is expressed at t+1. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

2.3.5 Direct Scale Free Network (DSF) 
Scale free nature of directed graph obeying Power law has 
well been implemented in many types of graph representation 
[14]. Novel Graph construction applications like web graph, 
where websites or web pages are the vertices and the direct 
link between them represent the edges of the graph, the movie 
actor graph, scientific collaboration graph are examples where 
the scale free nature of directed graph are implemented. In 
gene regulatory network construction direct scale free graph is 
implemented in recent past [26]. Graph construction process 
of gene regulatory network is based on degree based preferen-
tial attachments. Initially we have a set of genes named Nnew 
with which the GRN is to be constructed. The graph construc-
tion starts with an initial graph G(t0) at time point t0. It has a 
single node randomly chosen from Nnew with the initial de-
gree ≥1 (to make the calculation meaningful). In each step a 
new edge (regulatory interaction between two genes) will be 
attached to the graph and after t time units the graph will ex-
actly have t number of edges.  Whenever a node is fetched 
from Nnew and being used as the source (regulator) or target 
node of the edge to be attached it will be deleted from Nnew 
and being placed in a set named Nold, the set of existing nodes 
which have already been used in the graph. To attach an edge 
to the graph G(t) there are three steps:  

i) Choosing a regulator,  
ii) Choosing a target, 
iii) Placing a directed edge from regulator to target.  

 

Here a new node (regulator/target) i ∈Nnew having degree(i) = 
0 and an existing node (regulator/target) j ∈Nold having de-
gree(j) ≥1. 

The phrase 'degree based preferential attachment' indicates 
that edge connection and the choice of regulator and target is 
entirely based on degree [42], [26]. In case that a new node is 
chosen the question of degree does not arises and therefore the 
selection of new node may be random. But in case that an ex-
isting node if chosen as the  target the selection is based on its 
in-degree of the node and if chosen as the regulator the selec-
tion is based on the out-degree of the node.  

Selection of regulator and target node (gene) may be done 
in three possible phases:  

 Case A: New regulator and existing target, 
 Case B:  Existing regulator and existing target  
 Case C:  Exiting regulator and new target 
There are some probability constants like α, ß, γ, δinp and 

δout involved in this computation. They are non-negative real 
numbers provided α+ß+γ = 1 and δinp, δout≥ 0. Each of the 
three cases A, B and C are executed with the probability α, ß 
and γ respectively. The above mentioned cases are described 
as under: 

  
Case A: The case is chosen with probability α. New regula-

tor v, is chosen from the set Nnew randomly. In case of choos-
ing existing node as target w from the set Nold  a probability 
measure is to be estimated. The probability that a node wi tak-
en from the set Nold is the required target node w is given by: 

 
Pb(w = wi)  =  (Indeg(wi) + δinp) / (t + δinp.n(t)) 

 
Here, Indeg(wi) is the indegree of the node wi , t represents 

the time instance and n(t) represents number of nodes the 
graph contains in the current time point t. 

  
Case B: The case is chosen with probability ß. The regulator 

v, being an existing node is chosen from the set Nold with 
some probability. The probability that a node vi taken from 
the set Nold is the target node v of our interest is given by: 

 
Pb(v = vi)  =  (Outdeg(vi) + δout) / (t + δout.n(t)) 

 
Outdeg(vi) is the out-degree of the node  vi in the current 

graph. 
In case of choosing existing node as target w from the set 

Nold a probability is to be estimated. The probability that a 
node wi taken from the set Nold is the required target nod w is 
given by: 

 
Pb(w = wi)  =  (Indeg(wi) + δinp) / (t + δinp.n(t)) 

  
Case C: The case is chosen with probability Ƴ. The regula-

tor v, being an existing node is chosen from the set Nold with 
some probability. The probability that a node vi taken from 
the set Nold is the target node v of our interest is given by: 

 
Pb(v = vi)  =  (Outdeg(vi) + δout) / (t + δout.n(t)) 

 

TABLE 2 
ACTIVATION OF GENE X INA BOOLE-

AN NETWORK 
y z x 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               255 
ISSN 2229-5518 

 

IJSER © 2013 
http://www.ijser.org  

The target w, being a new node is chosen from the set Nnew 
either randomly or with some estimated probability. 

3 SIMULATION 
Reconstruction of Gene Regulatory network involves a step by 
step procedure of graph construction where at each instance a 
new weighted edge is added to the network. This may require 
a new node to be attached in the network. The final outcome is 
the simulated network with a set of parameters. The different 
parameters involved are i) weight parameters wij ∊ W, where 
W is an NxN matrix expressing the weight of each edge in the 
network, ii) Basal expression parameter bi, expression level of 
gene i in non-excited condition which is an 1xN vector and iii) 
timing parameter ti, the delay factor of gene i which is also an 
1xN vector. Here N is the number of genes involved in the 
network. So total number of parameters are N2+2N or N(N+2). 
The problem domain may be decomposed into two parts, 
network reconstruction and parameter estimation. Different 
soft computing tools and techniques like Artificial Neural 
Network, Fuzzy logic and different advanced search and op-
timization techniques are implemented in this area. There are 
some softwares which aid the work by supplying ready to use 
data and platforms for comparing original and simulated net-
work. The following subsections depict the different soft com-
puting tools, algorithms and software which aids the recon-
struction: 

3.1 Useful Software 
Since construction of Gene Regulatory Network is a well-
known problem domain over one and half decades. There are 
softwares like GeneNetWeaver, GNA (Genetic Network Ana-
lyzer), GINsim, GeNESis etc. which have been developed to 
aid the GRN reconstruction. One such well known open 
source software is GeneNetWeaver [28], [29] available in 
http://sourceforge.net. The software supplies time series gene 
expression data of organisms like Yeast and E.coli for their 
known regulatory network. It extracts strongly connected 
subgraphs of the known genetic graphs of the aforesaid organ-
isms. The number of nodes of the subgraphs may be specified 
by the user. It visualizes the original network and which can 
be used for future reference. It provides the facility for knock-
out tests (removing a node or gene from the network to see 
change in behavior of other nodes) and knockdown tests (low-
ering the expression level for a specific gene of interest and to 
note the corresponding change of other gene expressions). It 
facilitates some of the reconstruction algorithm including 
ARACNE [15] for simulation. It also provides the comparison 
platform for original to simulated network and publishes the 
result as pdf.      

3.2 Artificial Neural Network(ANN) 
Here each gene is considered as an artificial neuron [12], [18], 
[19], [20] which is activated and send interaction to another 
gene by the additive effects of interactions of other genes. 
Here the genes of a certain layer of ANN not only can send 
interaction to the layer next, rather it can send the interaction 
even to a gene of a previous layer. So Recurrent Neural Net-

work is the proper model applicable in this context. The varia-
tion of the expression level represented as the dynamics [43] of 
the system is given as under: 

 
𝑇𝑖

𝑑𝑥𝑖
𝑑𝑡

= 𝑆�∑ 𝑤𝑖𝑗
𝑁
𝑗=1 ⋅ 𝑥𝑗(𝑡)− 𝑏𝑖�− 𝑘𝑖 ⋅ 𝑥𝑖(𝑡)  (1) 

𝑑𝑥𝑖
𝑑𝑡

= 𝑙𝑖𝑚𝛥𝑡→0 𝑥𝑖(𝑡+𝛥𝑡)−𝑥𝑖(𝑡)
𝛥𝑡

   (2) 

Substituting (2) to (1) we get 
 
𝑥𝑖(𝑡 + 𝛥𝑡) = 𝑆�∑ 𝑤𝑖𝑗

𝑁
𝑗=1 ⋅ 𝑥𝑗(𝑡)− 𝑏𝑖� − 𝑘𝑖 ⋅ 𝑥𝑖(𝑡)�1− 𝛥𝑡

𝑇𝑖
⋅ 𝑘𝑖� (3) 

xi(t) is the expression level of gene i at time instance t, 
f(.) is a nonlinear sigmoid function f(x) =1/ (1+e-x), 
ki is the decay constant of ith gene, 
Ti is the time constant of gene i, 
bi is the basal expression of gene i, 
wij is the sigmoid weight from regulator j to target i, 
N is the maximum number of genes in the system. 
 
In each time step according to mathematical model a regu-

lator and target is probabilistically chosen, parameters are im-
posed (initially randomly), the expression level of the target is 
determined by expression (3) specified above. Error is estimat-
ed by comparing the original gene expression value to the es-
timated gene expression value. The objective of optimization 
is to reduce the error. The expression level of the target gene 
and the RNN parameters of current iteration are making tar-
get gene capable to determine regulatory interaction. 

3.3 Fuzzy Logic 
Fuzzy logic has been successfully implemented [48] for pa-
rameter estimation problem and gene expression level estima-
tion problem related to the present context [50]. It enhances 
the probability of choosing a value in the domain to be true. In 
other word it improves the Probability Mass Function. Sup-
pose a parameter value is to be chosen from a range -30 to +30. 
Let us take discrete values in the range at 0.1 interval. The dis-
crete set is {-30, -29.9, -29.8, . . . -0.1, 0, 0.1, . . . 29.8, 29.9, 30}. 
There are almost600 elements in the set. If we arbitrarily 
choose a value, the probability of right choice is 1/600. If we 
fuzzify the set in [0, 1] taking values of the interval 0.1, i.e. the 
typical membership values will lie in the range {0, 0.1, 0.2, 0.3, 
…., 0.9, 1}, the probability of choosing a value to be right value 
is almost 1/11 because of the presence of 11 elements in the 
fuzzy set. This probability improvement is the main cause of 
fuzzification. The work implements the parameter estimation 
using fuzzy set where the crisp set is taken as {-30, -15, 0.001, 
15, 30}. 0.001 is taken instead of 0 to make the defuzzification 
meaningful. Fuzzification is done dividing the crisp values by 
random numbers. Defuzzification is done using centroidal 
defuzzification using the formula written below: 

 

𝑤𝚤𝚥� (𝑡) =
∑ 𝑤

𝑚
𝑖𝑗

𝐿
𝑚=1 × 𝜇 �𝑤

𝑚
𝑖𝑗� (𝑡)

∑ 𝜇𝐿
𝑚=1 �𝑤

𝑚
𝑖𝑗� (𝑡)
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     𝑤
𝑚

𝑖𝑗is the crisp value, 
 
     𝜇�𝑤

𝑚
𝑖𝑗� (𝑡)is the fuzzy values generated in tth iteration 

 
𝑤𝚤𝚥� (𝑡)is the defuzzified value of tth iteration. 
 
In each iteration a set of five fuzzified values are generated 

for each of all N(N+2) parameters. After defuzzification it is 
been used for the gene expression value estimation and there-
by error calculation. 

 

3.4 Optimization Techniques 
In both parameter estimation and graph construction different 
meta-heuristic algorithms [50] like Genetic Algorithm (GA), 
Simulated Annealing (SA), Differential Evolution (DE) [48], 
Particle Swarm Optimization (PSO) [21], [22], Ant Colony Op-
timization (ACO) [23] are successfully implemented. ACO has 
shown better result in graph reconstruction problem [27] 
whereas PSO has proven it's excellence in parameter estima-
tion problem [26]. The optimization algorithms may be ob-
tained in different publications [26], [27], [48], [50] etc. The 
optimization problem may be modeled either for step by step 
graph construction problem learning the parameter in each 
iteration or it may be presented as parameter estimation prob-
lem where whole set of parameters are initialized arbitrarily 
and iteratively trying for better solution minimizing the error 
comparing the simulated value of equation (3) to the corre-
sponding micro-array gene expression data. The cost functions 
of the two types of problem specified above are written as 
mean squared error in equation (4) and (5) respectively. 

 
𝑆𝑖 = 1

𝑇
⋅ ∑ �𝑥𝑖(𝑡)− 𝑥�̄�(𝑡)�

2𝑇
𝑡=1    (4) 

E = 1
𝑁𝑇
⋅ ∑ ∑ �𝑥𝑖(𝑡)− 𝑥�̄�(𝑡)�

2𝑁
𝑖=1

𝑇
𝑡=1    (5) 

ei : The predicted error of the temporal expression pattern 
of gene i, 

E: Error associated with the predicted time series, 
xi(t) and xi(t):  The original and estimated expression level 

of gene i at time point t respectively, 
T: The number of time-points in the time-series micro array 

data, 
N:  is the number of genes in the system. 

4 REVIEW OF EXPERIMENTAL RESULTS 
This section provides the details of the source of microarray 
gene expression data. The measurement metrics for compari-
son of the simulated network to the original known network 
are discussed. Here original network may be obtained from 
the software like GeneNetWeaver. Lastly the listing of the ap-
plications of soft computing tools in different reviewed prob-
lems is presented. 

 

4.1 Data Source 
The starting point of the study lies in the biological data avail-
able from Micro-array. Micro-array is a suitable technology 
[6], [7] from where the gene expression data for large number 
of genes are available. Microarray is a glass slide where single 
stranded DNA molecules are attached by biological methods 
like spectrometry in fixed locations of the slide. These fixed 
locations are called spots. Each spot generally represent a 
gene. There may be thousands of genes represented in a mi-
croarray. The microarray data is obtained from different pub-
lic repositories [32], [33], [34], [35] in different data formats 
like .cel, .tab etc. The data is then represented in some popular 
tabular format like spreadsheet by using different software 
like R, bio-conductor, orange etc. The data may be of two 
types: time series data and steady state data. Both are repre-
sented as 2D arrays [49] where rows are represented by N 
Number of genes and columns are represented either by M 
time points (in case of time series where gene expressions are 
plotted in different time points) or by M conditions (in case of 
steady state where gene expression for different conditions 
like normal tissues, diseased tissues, tissues after therapeutic 
intervention are plotted). Apart from genes there may be one 
extra column present in the raw data which correspond to the 
class label. The expression level of ith gene at jth time point is 
situated at the intersection point of ith row and jth column. 
There are two sub-categories of time series data: short time 
series (containing 3 – 8 time points) and long time series (more 
than 8 time points). But two important difficulties are involved 
here are: firstly, many biological and experimental noises are 
involved in the data and secondly, compared to the number of 
genes the number of time steps in which their expression lev-
els measured are few. This phenomenon is called the “curse of 
dimensionality” [27].  The data thus collected from gene chip 
or microarray by using image analysis tools are needed to be 
properly extracted to get actual expression levels of the genes. 

 

4.2 Metric 
The performance of simulation is estimated by comparing the 
edges obtained from co-expression matrix to the edges of the 
inverse modeled network. Comparing the original adjacency 
matrix to the simulated one an edge eij may be named as true 
positive (tp), false positive (fp), true negative (tn) or false neg-
ative (fn). The Sensitivity of the simulation is defined by the 
True Positive Rate which indicates the share of correctly in-
ferred edges over total number of edges that should be in-
ferred (tp and fn) edges [27], [49]. On the other hand Specifici-
ty of the simulation is defined by the False Positive Rate of the 
predicted network which indicates the share of falsely inferred 
edges over total number of edges that should not be inferred 
(tp and tn). Finally the Precision of the simulated network, 
also referred as the Positive Predictive Value, indicates the 
share of correctly inferred edges over all inferred edges.  The 
Sensitivity, Specificity and the Precision are defined as: 

 
𝑆𝑆𝑡𝑠𝑆𝑡𝑆𝑣𝑆𝑡𝑆 =

𝑡𝑆
𝑡𝑆 + 𝑆𝑡
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑆 =
𝑆𝑆

𝑆𝑆 + 𝑡𝑡
 

𝑃𝑟𝑆𝑆𝑆𝑠𝑆𝑜𝑡 =
𝑡𝑆

𝑡𝑆 + 𝑆𝑆
 

tp: true positive edge, 
fp: false positive edge, 
tn: true negative edge, 
fn: false negative edge. 

4.3 Performance Analysis 
In this paper the relative performances of soft computing tools 
applied in different works are presented. Different soft com-
puting tools presented here are Recurrent Neural Network 
(RNN), Fuzzy Logic, Particle Swarm Optimization (PSO), Ant 
Colony Optimization (ACO) and Differential Evolution 
(DE).The soft computing tools are applied in two types of 
problems, Parameter-set Generation problem and Dynamic 
Graph Generation Problem. Performances of different re-
viewed works are presented with the paper reference number 
in the table. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
√ specifies good result, 
 [i] Denote the paper number in reference. 

5 CONCLUSION 
In this article the effort is made to present a complete rele-
vance and procedure of gene regulatory network and its re-
construction. A clear explanation of what GRN is, how does 
the formation of GRN take place as a result of certain cellular 
activities, what will be its actual structure, and why the recon-
struction process of such networks are so important is given. It 
is seen that the infant of an organism has the same orientation 
of genes in its genome as in the adult of that organism. The 
only thing differs in these two cases, is the way of expression 

of different genes and the resulting regulatory network of 
genes that causes the variation in their shapes, activities and 
other characteristics. The applications in detecting biomarker 
of a disease and finding drug for the disease have extensive 
importance in bio-informatics. But at the time of simulating 
the network or estimating the parameters for gene expression 
profiling we have only time series or steady state gene expres-
sion data at our hand which is again prone to errors. The prior 
knowledge of the structure of the graph is also not available. 
This situation makes the network prediction job a tedious one. 
In this article focus is made to each issue of modeling and 
simulation of the network and certain measures are suggested 
to reduce the complexity. Different mathematical models re-
quired for the simulation of GRN like data extraction proce-
dure, co-expression network generation, different forward and 
reverse probabilistic models are discussed. The optimization 
techniques to reduce the state space search during graph re-
construction and parameter estimation, different soft compu-
ting techniques to facilitate the reconstruction are stated. The 
microarray technology, the public data sources of Time Series 
and Steady State gene expression data, different metrics to 
measure the performance of the simulation are presented and 
the application area is explained here. The software named 
GeneNetWeaver, discussed here, is not only useful as a plat-
form for producing time series gene expression data needed 
for experiments but also provides a platform for different per-
turbation experiments like Knock Out and Knock Down tests. 
In this paper, the focus has been made on the optimal struc-
ture of GRN, but in future there is an ample scope for research 
in a particular disease domain, such as, to detect the bi-
omarker of the disease, to find pathway for the disease, to find 
drug based on the simulation of GRN. 
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